首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2824篇
  免费   59篇
  国内免费   8篇
化学   1436篇
晶体学   19篇
力学   72篇
数学   305篇
物理学   1059篇
  2019年   20篇
  2016年   36篇
  2015年   39篇
  2014年   53篇
  2013年   65篇
  2012年   96篇
  2011年   116篇
  2010年   48篇
  2009年   49篇
  2008年   120篇
  2007年   101篇
  2006年   119篇
  2005年   126篇
  2004年   88篇
  2003年   67篇
  2002年   64篇
  2001年   63篇
  2000年   49篇
  1999年   31篇
  1998年   30篇
  1997年   39篇
  1996年   63篇
  1995年   60篇
  1994年   57篇
  1993年   68篇
  1992年   41篇
  1991年   24篇
  1990年   31篇
  1989年   35篇
  1988年   33篇
  1987年   31篇
  1986年   36篇
  1985年   24篇
  1984年   31篇
  1983年   26篇
  1982年   27篇
  1981年   23篇
  1980年   29篇
  1979年   20篇
  1978年   25篇
  1976年   19篇
  1975年   30篇
  1974年   20篇
  1973年   20篇
  1971年   19篇
  1969年   19篇
  1968年   49篇
  1967年   117篇
  1966年   110篇
  1965年   71篇
排序方式: 共有2891条查询结果,搜索用时 593 毫秒
41.
XANES and EXAFS spectroscopic studies at the Mn-K- and Br-K-edge of reaction products of (S,S)-(+)-N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminomanganese(III) chloride ([(salen)Mn(III)Cl], 1) and (S,S)-(+)-N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediaminomanganese(III) bromide ([(salen)Mn(III)Br], 2) with 4-phenylpyridine N-oxide (4-PPNO) and 3-chloroperoxybenzoic acid (MCPBA) are reported. The reaction of the Mn(III) complexes with two equivalents of 4-PPNO leads to a hexacoordinated compound, in which the manganese atom is octahedrally coordinated by four oxygen/nitrogen atoms of the salen ligand at an average distance of approximately 1.90 A and two additional, axially bonded oxygen atoms of the 4-PPNO at 2.25 A. The oxidation state of this complex was determined as approximately +IV by a comparative study of Mn(III) and Mn(V) reference compounds. The green intermediate obtained in reactions of MCPBA and solutions of 1 or 2 in acetonitrile was investigated with XANES, EXAFS, UV/Vis, and Raman spectroscopy, and an increase of the coordination number of the manganese atoms from 4 to 5 and the complete abstraction of the halide was observed. A formal oxidation state of IV was deduced from the relative position of the pre-edge 1s-->3d feature of the X-ray absorption spectrum of the complex. The broad UV/Vis band of this complex in acetonitrile with lambda(max)=648 nm was consistent with a radical cation structure, in which a MCPBA molecule was bound to the Mn(IV) central atom. An oxomanganese(V) or a dimeric manganese(IV) species was not detected.  相似文献   
42.
In the reaction of the N-substituted diethanolamines (H(2)L(1-3)) (1-3) with calcium hydride followed by addition of iron(III) or indium(III) chloride, the iron wheels [Fe(6)Cl(6)(L(1))(6)] (4) and [Fe(6)Cl(6)(L(2))(6)] (6) or indium wheels [In(6)Cl(6)(L(1))(6)] (5), [In(6)Cl(6)(L(2))(6)] (8) and [In(6)Cl(6)(L(3))(6)] (9) were formed in excellent yields. Exchange of the chloride ions of 6 by thiocyanate ions afforded [Fe(6)(SCN)(6)(L(2))(6)] (7). Whereas the structures of 4, 5 and 7 were determined unequivocally by single-crystal X-ray analyses, complexes 8 and 9 were characterised by NMR spectroscopy. Contrary to what is normally presumed, the scaffolds of six-membered metallic wheels are not generally rigid, but rather undergo nondissociative topomerisation processes. This was shown by variable temperature (VT) (1)H NMR spectroscopy for the indium wheel [In(6)Cl(6)(L(1))(6)] (5) and is highlighted for the enantiotopomerisation of one indium centre [ 1/6[S(6)-5]<==>[1/6[S(6)-5']]. The self-assembly of metallic wheels, starting from diethanolamine dendrons, is an efficient strategy for the convergent synthesis of metallodendrimers.  相似文献   
43.
Proteomic analysis of simulated occupational jet fuel exposure in the lung   总被引:3,自引:0,他引:3  
We analyzed protein expression in the cytosolic fraction prepared from whole lung tissue in male Swiss-Webster mice exposed 1 h/day for seven days to aerosolized JP-8 jet fuel at concentrations of 1000 and 2500 mg/m3, simulating military occupational exposure. Lung cytosol samples were solubilized and separated via large scale, high resolution two-dimensional electrophoresis (2-DE) and gel patterns scanned, digitized and processed for statistical analysis. Significant quantitative and qualitative changes in tissue cytosol proteins resulted from jet fuel exposure. Several of the altered proteins were identified by peptide mass fingerprinting, confirmed by sequence tag analysis, and related to impaired protein synthetic machinery, toxic/metabolic stress and detoxification systems, ultrastructural damage, and functional responses to CO2 handling, acid-base homeostasis and fluid secretion. These results demonstrate a significant but comparatively moderate JP-8 effect on protein expression and corroborate previous morphological and biochemical evidence. Further molecular marker development and mechanistic inferences from these observations await proteomic analysis of whole tissue homogenates and other cell compartment, i.e., mitochondria, microsomes, and nuclei of lung and other targets.  相似文献   
44.
The topic of this article is the development and the present state of the art of computer chemistry, the computer-assisted solution of chemical problems. Initially the problems in computer chemistry were confined to structure elucidation on the basis of spectroscopic data, then programs for synthesis design based on libraries of reaction data for relatively narrow classes of target compounds were developed, and now computer programs for the solution of a great variety of chemical problems are available or are under development. Previously it was an achievement when any solution of a chemical problem could be generated by computer assistance. Today, the main task is the efficient, transparent, and non-arbitrary selection of meaningful results from the immense set of potential solutions—that also may contain innovative proposals. Chemistry has two aspects, constitutional chemistry and stereochemistry, which are interrelated, but still require different approaches. As a result, about twenty years ago, an algebraic model of the logical structure of chemistry was presented that consisted of two parts: the constitution-oriented algebra of be- and r-matrices, and the theory of the stereochemistry of the chemical identity group. New chemical definitions, concepts, and perspectives are characteristic of this logic-oriented model, as well as the direct mathematical representation of chemical processes. This model enables the implementation of formal reaction generators that can produce conceivable solutions to chemical problems—including unprecedented solutions—without detailed empirical chemical information. New formal selection procedures for computer-generated chemical information are also possible through the above model. It is expedient to combine these with interactive methods of selection. In this review, the Munich project is presented and discussed in detail. It encompasses the further development and implementation of the mathematical model of the logical structure of chemistry as well as the experimental verification of the computer-generated results. The article concludes with a review of new reactions, reagents, and reaction mechanisms that have been found with the PC-programs IGOR and RAIN.  相似文献   
45.
BiBr3 or SbI3 react at 20°C with LiN(PPh2)2 (1) to give elementary Bi or Sb and the P---P coupled phosphazene ligand Ph2P---N=PPh2---PPh2=N---PPh2 (2). The reaction of AsI3 with 1 at room temperature formed yellow needles of the eight-membered heterocycle (3), whereas AsI3 interacted at 80°C with 1 in the molar ratio of 1:3 to give elementary arsenic and 2. Treatment of AsI3 and 1 at 20°C in a 1:2 stoichiometry yielded the seven-membered, cyclic arsenium(I) salt I·4THF (5·4THF), which was characterized by elemental analysis, conductivity, mass, IR and NMR spectroscopy and single-crystal X-ray structural analysis.  相似文献   
46.
Aldehydes and ketones add to the cycloheptatriene ester anion 2a and to the carboxylic acid dianion 2b at C-7 (α-attack) or C-2 (C-5) (γ-attack), depending on the starting compounds.  相似文献   
47.
48.
49.
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号